
Events

The most important aspect to unobtrusive DOM scripting is the use of dynamically bound
events. The ultimate goal of writing usable JavaScript code is to have a web page that will
work for the users, no matter what browser they’re using or what platform they’re on. To
accomplish this, you set a goal of the features that you want to use, and exclude any brow-
sers that do not support them. For the unsupported browsers, you then give them a func-
tional, albeit less interactive, version of the site. The benefits to writing JavaScript and
HTML interactions in this manner include cleaner code, more accessible web pages, and
better user interactions. All of this is accomplished by using DOM events to improve the
interaction that occurs in web applications.

The concept of events in JavaScript has advanced through the years—to the reliable,
semiusable plateau where we now stand. Thankfully, due to the general similarities that
exist, you can develop some excellent tools to help you build powerful, cleanly written web
applications.

In this chapter I’m going to start with an introduction to how events work in JavaScript
and how it compares to event models in other languages. Then you’re going to look at what
information the event model provides you with and how you can best control it. After looking
at binding events to DOM elements and the different types of events that are available, I con-
clude by showing how to integrate some effective unobtrusive scripting techniques into any
web page.

Introduction to JavaScript Events
If you look at the core of any JavaScript code, you’ll see that events are the glue that holds
everything together. In a nicely designed JavaScript application, you’re going to have your
data source and its visual representation (inside of the HTML DOM). In order to synchronize
these two aspects, you’re going to have to look for user interactions and attempt to update
your web site accordingly. The combination of using the DOM and JavaScript events is the
fundamental union that makes all modern web applications what they are.

Asynchronous Events vs. Threads
The event system in JavaScript is rather unique. It operates completely asynchronously using
no threads at all. This means that all code in your application will be reliant upon other
actions—such as a user’s click or a page loading—triggering your code.

111

C H A P T E R 6

■ ■ ■

The fundamental difference between threaded program design and asynchronous pro-
gram design is in how you wait for things to happen. In a threaded program you would keep
checking over and over whether your condition has been met. Whereas in an asynchronous
program you would simply register a callback function with an event handler, and then when-
ever that event occurs, the handler would let you know by executing your callback function.
Let’s explore how a JavaScript program could be written if it used threads, and how a Java-
Script program is written using asynchronous callbacks.

JavaScript Threads
As it stands today, JavaScript threads do not exist. The closest that you can get is by using
a setTimeout() callback, but even then, it’s less than ideal. If JavaScript were a traditional
threaded programming language, something like the code shown in Listing 6-1 would work.
It is a mock piece of code in which you’re waiting until the page has completely loaded. If
JavaScript were a threaded programming language, you would have to do something like
this. Thankfully, that is not the case.

Listing 6-1. Mock JavaScript Code for Simulating a Thread

// NOTE: This code DOES NOT work!
// Wait until the page is loaded, checking constantly
while (! window.loaded()) { }

// The page is loaded now, so start doing stuff
document.getElementById("body").style.border = "1px solid #000";

If you’ll notice, in this code there is a loop that’s continually checking to see if
window.loaded() returns true or not. Regardless of the fact that there’s no loaded() function
on the window object, having a loop like that doesn’t work in JavaScript. This is due to the
fact that all loops in JavaScript are blocking (this means that nothing else can happen until
they finish running). If JavaScript were able to handle threads, you would see something like
Figure 6-1. In the figure, the while loop in your code continually checks to see if the window
is loaded. This does not work in JavaScript due to the fact that all loops are blocking (in that
no other operations can be executed while the loop is operating).

CHAPTER 6 ■ EVENTS112

Figure 6-1. What you’d see if JavaScript were able to handle threads

In reality, since our while loop continues running and blocking the normal flow of the
application, it’ll never reach a true value. The result is that the user’s browser will hang and
stall and possibly crash. The lesson that you can take away from this is that if you ever see
anyone claiming that using a while loop to wait for an action works (in JavaScript), they’re
probably lying or very confused.

Asynchronous Callbacks
The programmatic alternative to using threads to constantly check for updates is to use
asynchronous callbacks, which is what JavaScript uses. Using plain terminology, you tell
a DOM element that anytime an event of a specific type is called, you want a function to be
called to handle it. This means that you can provide a reference to the code that you wish
to be executed when needed and the browser takes care of all the details. A sample piece
of code using event handlers and callbacks is shown in Listing 6-2. You see the actual code
required to bind a function to an event handler (window.onload) in JavaScript.
window.onload() will be called whenever the page has been loaded. This is also the case
for other common events such as click, mousemove, and submit.

Listing 6-2. Asynchronous Callbacks in JavaScript

// Register a function to be called whenever the page is loaded
window.onload = loaded;

// The function to call whenever the page is loaded.
function loaded() {

// The page is loaded now, so start doing stuff
document.getElementById("body").style.border = "1px solid #000";

}

Comparing the code in Listing 6-2 to the code shown in Listing 6-1, you see a distinct
difference. The only code that is executed right away is the binding of the event handler (the
loaded function) to the event listener (the onload property). The browser, whenever the page
is completely loaded, calls the function associated with window.onload and executes it. The
flow of the JavaScript code looks something like what’s shown in Figure 6-2. The figure shows
a representation of using callbacks to wait for the page to load in JavaScript. Since it’s actually
impossible to wait for something, you register a callback (loaded) with a handler
(window.onload), which will be called whenever the page is fully loaded.

One point that isn’t immediately apparent with our simple event listener and handler is
that the order of events can vary and can be handled differently depending on the type of
event and where in the DOM the element exists. We’ll look at the two different phases of
events in the next section and what makes them so different.

CHAPTER 6 ■ EVENTS 113

Event Phases
JavaScript events are executed in two phases called the capturing and bubbling phases.
What this means is that when an event is fired from an element (e.g., the user clicking a link
causing the click event to fire), the elements that are allowed to handle it, and in what order,
vary. You can see an example of the execution order in Figure 6-3. The figure shows what
event handlers are fired, in what order, whenever a user clicks the first <a> element on the
page.

Looking at a simple example of someone clicking a link (in Figure 6-3), you can see the
order of execution for an event. Pretending that the user clicked the <a> element, the click
handler for the document is fired first, then the <body>’s handler, then the <div>’s handler,
and so on, down to the <a> element; this is called the capturing phase. Once that finishes, it

CHAPTER 6 ■ EVENTS114

Figure 6-2. A representation of using callbacks to wait for the page to load

Figure 6-3. The two phases of event handling

moves back up the tree again, and the , , <div>, <body>, and document event handlers
are all fired, in that order.

There are very specific reasons why event handling is built this way, and it works very
well. Let’s look at a simple example. Say you want each of the elements to change its back-
ground color whenever a user moves his mouse over them, and change back again when the
mouse moves off—a common need for most menus. The code shown in Listing 6-3 does
exactly this.

Listing 6-3. A Tabbed-Navigation Scenario with Hovering Effects

// Find all the elements, to attach the event handlers to them
var li = document.getElementsByTagName("li");
for (var i = 0; i < li.length; i++) {

// Attach a mouseover event handler to the element,
// which changes the s background to blue.
li[i].onmouseover = function() {

this.style.backgroundColor = 'blue';
};

// Attach a mouseout event handler to the element
// which changes the s background back to its default white
li[i].onmouseout = function() {

this.style.backgroundColor = 'white';
};

}

This code behaves exactly as you’d imagine: you mouse over an element and its back-
ground color is changed; you move your mouse off of it, and the color goes back. However,
what you don’t realize is that you’re actually toggling two different elements every time you
move your mouse over the . Since the element also contains an <a> element, you’re
moving your mouse over it, instead of just the . Let’s look at the exact flow of the event
calls:

1. mouseover: You move your mouse over the element.

2. mouseout: You move from the to the <a> contained inside of it.

3. <a> mouseover: Your mouse is now over the <a> element.

4. mouseover: The <a> mouseover event bubbles up to the mouseover.

You may notice from the way that you’re calling the events, that you’re completely ignor-
ing the capturing event phase; don’t worry, I haven’t forgotten about it. The way that you’re
binding the event listeners is by using an old “traditional” means of binding events by setting
the onevent property of an element, which only supports event bubbling, not capturing. This
way of event binding, and others, is discussed in the next section.

CHAPTER 6 ■ EVENTS 115

In addition to the strange order of event calls, you may have noticed two unexpected
actions: the mouseout of the element and the <a> to mouseover bubbling. Let’s look
at those in detail.

The first mouseout event occurs because, as far as the browser is concerned, you’ve left
the realm of the parent element and have moved into another element. This is due to the
fact that whichever element is currently on top of the elements beneath them (as the <a> ele-
ment is to its parent) receives the immediate focus of the mouse.

The <a> mouseover bubbling to the parent element ends up becoming our saving
grace in this piece of code. Since you haven’t actually bound any sort of listener to the <a> ele-
ment, the event simply continues on up the DOM tree, looking for another element that is
listening. The first element that it encounters in its bubbling process is the element,
which is listening for incoming mouseover events (and which is exactly what you want).

One point that you should consider is, what if you did bind an event handler to the <a>
element’s mouseover event? Is there any way that you could stop the bubbling of the event?
This is an important and useful topic that I will be covering next.

Common Event Features
A great aspect of JavaScript events is that they have a number of relatively consistent features
that give you more power and control when developing. The simplest and oldest concept is
that of the event object, which provides you with a set of metadata and contextual functions
to allow you to deal with things such as mouse events and keyboard presses. Additionally,
there are functions that can be used to modify the normal capture/bubbling flow of an event.
Learning these features inside and out can make your life much simpler.

The Event Object
One standard feature of event handlers is some way to access an event object, which contains
contextual information about the current event. This object serves as a very valuable resource
for certain events. For example, when handling keyboard presses you can access the keyCode
property of the object to get the specific key that is pressed. More details concerning the
specifics of the event object can be found in Appendix B.

The tricky part of the event object, however, is that Internet Explorer’s implementation
is different from the W3C’s specification. Internet Explorer has a single global event object
(which can be reliably found in the global variable property window.event), whereas every
other browser has a single argument passed to it, containing the event object. An example of
reliably using the event object is shown in Listing 6-4. The listing is an example of modifying
a common <textarea> element to behave differently. Typically, users can hit the Enter key
inside of a textarea, causing there to be extra end lines. But what if you don’t want that and
instead only want a large text box? This function provides just that.

CHAPTER 6 ■ EVENTS116

Listing 6-4. Overriding Functionality Using DOM Events

// Find the first <textarea> on the page and bind a keypress listener
document.getElementsByTagName("textarea")[0].onkeypress = function(e){

// If no event object exists, then grab the global (IE-only) one
e = e || window.event;

// If the Enter key is pressed, return false (causing it to do nothing)
return e.keyCode != 13;

};

There are a lot of attributes and functions contained within the event object, and what
they’re named or how they behave varies from browser to browser. I won’t go into the particu-
lars right now, but I highly recommend that you read Appendix B, which has a large list of all
the event object features, how to use them, and examples of them in use.

The this Keyword
The this keyword (as discussed in Chapter 2) serves as a way to access the current object within
the scope of a function. Modern browsers give all event handlers some context using the this
keyword. As usual, only some of them (and only some methods) play nice and set it equal to the
current element; this will be discussed in depth in a minute. For example, in Listing 6-5, I can
take advantage of this fact by only creating one generic function for handling clicks but using
the this keyword to determine which element is currently being affected. The listing shows an
example of using only one function to handle a click event, but since it uses the this keyword
to reference the element, it will work as intended.

Listing 6-5. Changing the Background and Foreground Color of All Elements Whenever
They Are Clicked

// Find all elements and bind the click handler to each of them
var li = document.getElementsByTagName("li");
for (var i = 0; i < li.length; i++) {

li[i].onclick = handleClick;
}

// The click handler – when called it changes the background and
// foreground color of the specified element
function handleClick() {

this.style.backgroundColor = "blue";
this.style.color = "white";

}

The this keyword really is nothing more than a convenience, however, I think you’ll find
that it can greatly reduce the complexity of your JavaScript code when using it properly. I try
to write all the event-related code in this book using the this keyword.

CHAPTER 6 ■ EVENTS 117

Canceling Event Bubbling
Since you know how event capturing/bubbling works, let’s explore how you can take control
of it. An important point brought up in the previous example is that if you want an event to
only occur on its target and not its parent elements, you have no way to stop it. Stopping the
flow of an event bubble would cause an occurrence similar to what is shown in Figure 6-4,
which shows the result of an event being captured by the first <a> element and the subse-
quent bubbling being canceled.

Stopping the bubbling (or capturing) of an event can prove immensely useful in complex
applications. Unfortunately, Internet Explorer offers a different way than all other browsers to
stop an event from bubbling. A generic function to cancel event bubbling can be found in
Listing 6-6. The function takes a single argument: the event object passed into an event han-
dler. The function handles the two different ways of canceling the event bubbling: the
standard W3C way, and the nonstandard Internet Explorer way.

Listing 6-6. A Generic Function for Stopping Event Bubbling

function stopBubble(e) {
// If an event object is provided, then this is a non-IE browser
if (e && e.stopPropagation)

// and therefore it supports the W3C stopPropagation() method
e.stopPropagation();

else
// Otherwise, we need to use the Internet Explorer
// way of cancelling event bubbling
window.event.cancelBubble = true;

}

CHAPTER 6 ■ EVENTS118

Figure 6-4. The result of an event being captured by the first <a> element

What you’re probably wondering now is, when would I want to stop the bubble of events?
Honestly, the majority of the time you’ll probably never have to worry about it. The need for
it begins to arise when you start developing dynamic applications (especially ones that deal
with the keyboard or mouse).

Listing 6-7 shows a brief snippet that adds a red border around the current element that
you’re hovered over. You do this by adding a mouseover and a mouseout event handler to
every DOM element. If you don’t stop the event bubbling, every time you move your mouse
over an element, the element and all of its parent elements will have the red border, which
isn’t what you want.

Listing 6-7. Using stopBubble() to Create an Interactive Set of Elements

// Locate, and traverse, all the elements in the DOM
var all = document.getElementsByTagName("*");
for (var i = 0; i < all.length; i++) {

// Watch for when the user moves his mouse over the element
// and add a red border around the element
all[i].onmouseover = function(e) {

this.style.border = "1px solid red";
stopBubble(e);

};

// Watch for when the user moves back out of the element
// and remove the border that we added
all[i].onmouseout = function(e) {

this.style.border = "0px";
stopBubble(e);

};

}

With the ability to stop the event bubbling, you now have complete control over which
elements get to see and handle an event. This is a fundamental tool necessary for exploring
the development of dynamic web applications. The final aspect is to cancel the default action
of the browser, allowing you to completely override what the browser does and implement
new functionality instead.

Overriding the Browser’s Default Action
For most events that take place, the browser has some default action that will always occur.
For example, clicking an <a> element will take you to its associated web page; this is a default
action in the browser. This action will always occur after both the capturing and the bubbling
event phases, as shown in Figure 6-5. This particular example shows the results of a user click-
ing an <a> element in a web page. The event begins by traveling through the DOM in both a
capturing and bubbling phase (as discussed previously). However, once the event has finished
traversing, the browser attempts to execute the default action for that event and element. In
this case, it’s visiting the / web page.

CHAPTER 6 ■ EVENTS 119

Default actions can be summarized as anything that the browser does that you do not
explicitly tell it to do. Here’s a sampling of the different types of default actions that occur, and
on what events:

• Clicking an <a> element will redirect you to a URL provided in its href attribute.

• Using your keyboard and pressing Ctrl+S, the browser will attempt to save a physical
representation of the site.

• Submitting an HTML <form> will submit the query data to the specified URL and redi-
rect the browser to that location.

• Moving your mouse over an with an alt or a title attribute (depending on the
browser) will cause a tool tip to appear, providing a description of the .

All of the previous actions are executed by the browser even if you stop the event bub-
bling or if you have no event handler bound at all. This can lead to significant problems in
your scripts. What if you want your submitted forms to behave differently? Or what if you
want <a> elements to behave differently than their intended purpose? Since canceling
event bubbling isn’t enough to prevent the default action, you need some specific code to
handle that directly. As with canceling event bubbling, there are two ways of stopping the
default action from occurring: the IE-specific way and the W3C way. Both ways are shown
in Listing 6-8. The function shown takes a single argument: the event object that’s passed
in to the event handler. This function should be used at the very end of your event handler,
like so: return stopDefault(e);—as your handler needs to also return false (which is,
itself, returned from stopDefault for you).

CHAPTER 6 ■ EVENTS120

Figure 6-5. The full life cycle of an event

Listing 6-8. A Generic Function for Preventing the Default Browser Action from Occurring

function stopDefault(e) {
// Prevent the default browser action (W3C)
if (e && e.preventDefault)

e.preventDefault();

// A shortcut for stoping the browser action in IE
else

window.event.returnValue = false;

return false;
}

Using the stopDefault function, you can now stop any default action presented by the
browser. This allows you to script some neat interactions for the user, such as the one shown
in Listing 6-9. The code makes all the links on a page load in a self-contained <iframe>, rather
than opening up a whole new page. Doing this allows you to keep the user on the page, and
for possibly a more interactive experience.

■Note Preventing a default action works for 95% of all cases in which you will want to use it. Things start
to get really tricky when you move from browser to browser, due to the fact that it’s up to the browser to
prevent the default action (which they don’t always do correctly), especially when working with preventing
actions from key presses in text areas and preventing actions inside <iframe>s; other than that, things
should be pretty sane though.

Listing 6-9. Using stopDefault() to Override Browser Functionality

// Let's assume that we already have an IFrame in the page
// with an ID of 'iframe'
var iframe = document.getElementById("iframe");

// Locate all <a> elements on the page
var a = document.getElementsByTagName("a");
for (var i = 0; i < a.length; i++) {

// Bind a click handler to the <a>
a[i].onclick = function(e) {

// Set the IFrame's location
iframe.src = this.href;

CHAPTER 6 ■ EVENTS 121

// Prevent the browser from ever visiting the web site pointed to from
// the <a> (which is the default action)
return stopDefault(e);

};

}

Overriding default events is at the absolute crux of the DOM and events, which come
together to form unobtrusive DOM scripting. I’ll talk more about how this works, in a func-
tional sense, in the section “Unobtrusive DOM Scripting” later in this chapter. However, it’s
not all perfect; a major point of contention arrives when it comes time to actually bind your
event handlers to a DOM element. There are actually three different ways of binding events,
some of which are better than others, all of which are discussed in the next section.

Binding Event Listeners
How to bind event handlers to elements has been a constantly evolving quest in JavaScript.
It began with browsers forcing users to write their event handler code inline, in their HTML
document. Thankfully that technique has since become much less popular (which is good,
considering that it goes against the data abstraction principles of unobtrusive DOM scripting).

When Netscape and Internet Explorer were actively competing with each other, they each
developed two separate, but very similar, event registration models. In the end, Netscape’s
model was modified to become a W3C standard, and Internet Explorer’s stayed the same.

Today, there remain three ways of reliably registering events. The traditional method is
an offshoot of the old inline way of attaching event handlers, but it’s reliable and works con-
sistently. The other methods are the IE and W3C ways of registering events. Finally, I present
a reliable set of methods that developers can use to register and remove events and no longer
worry about what browser is lying underneath.

Traditional Binding
The traditional way of binding events is the one that I’ve been using up until now in this
chapter. It is by far the simplest, most compatible way of binding event handlers. To use
this particular method, you attach a function as a property to the DOM element that you
wish to watch. Some samples of attaching events using the traditional method are shown
in Listing 6-10.

Listing 6-10. Attaching Events Using the Traditional Method of Event Binding

// Find the first <form> element and attach a 'submit' event handler to it
document.getElementsByTagName("form")[0].onsubmit = function(e){

// Stop all form submission attempts
return stopDefault(e);

};

CHAPTER 6 ■ EVENTS122

// Attach a keypress event handler to the <body> element of the document
document.body.onkeypress = myKeyPressHandler;

// Attach an load event hanlder to the page
window.onload = function(){ … };

This particular technique has a number of advantages and disadvantages, which you
must be aware of when using them.

Advantages of Traditional Binding
The following are the advantages of using the traditional method:

• The biggest advantage of using the traditional method is that it’s incredibly simple and
consistent, in that you’re pretty much guaranteed that it’ll work the same no matter
what browser you use it in.

• When handling an event, the this keyword refers to the current element, which can be
very useful (as demonstrated in Listing 6-5).

Disadvantages of Traditional Binding
The disadvantages of the traditional method are as follows:

• The traditional method only works with event bubbling, not capturing and bubbling.

• It’s only possible to bind one event handler to an element at a time. This has the poten-
tial to cause confusing results when working with the popular window.onload property
(effectively overwriting other pieces of code that have used the same method of binding
events). An example of this problem is shown in Listing 6-11, where an event handler
overwrites an old event handler.

• The event object argument is only available in non-Internet Explorer browsers.

Listing 6-11. Event Handlers Overwriting Each Other

// Bind your initial load handler
window.onload = myFirstHandler;

// somewhere, in another library that you've included,
// your first handler is overwritten
// only 'mySecondHandler' is called when the page finishes loading
window.onload = mySecondHandler;

Knowing that it’s possible to blindly override other events, you should probably opt to
only use the traditional means of event binding in simple situations, where you can trust all
the other code that is running alongside yours. One way to get around this troublesome mess,
however, is to use the modern event binding methods provided by browsers.

CHAPTER 6 ■ EVENTS 123

DOM Binding: W3C
The W3C’s method of binding event handlers to DOM elements is the only truly standardized
means of doing so. With that in mind, every modern browser supports this way of attaching
events except for Internet Explorer.

The code for attaching a new handler function is simple. It exists as a function of every
DOM element (named addEventListener) and takes three parameters: the name of the event
(e.g., click), the function that will handle the event, and a Boolean flag to enable or disable
event capturing. An example of addEventListener in use is shown in Listing 6-12.

Listing 6-12. Sample Pieces of Code That Use the W3C Way of Binding Event Handlers

// Find the first <form> element and attach a 'submit' event handler to it
document.getElementsByTagName("form")[0].addEventListener('submit',function(e){

// Stop all form submission attempts
return stopDefault(e);

}, false);

// Attach a keypress event handler to the <body> element of the document
document.body.addEventListener('keypress', myKeyPressHandler, false);

// Attach an load event hanlder to the page
window.addEventListener('load', function(){ … }, false);

Advantages of W3C Binding
The advantages to the W3C event-binding method are the following:

• This method supports both the capturing and bubbling phases of event handling. The
event phase is toggled by setting the last parameter of addEventListener to false (for
bubbling) or true (for capturing).

• Inside of the event handler function, the this keyword refers to the current element.

• The event object is always available in the first argument of the handling function.

• You can bind as many events to an element as you wish, with none overwriting previ-
ously bound handlers.

Disadvantage of W3C Binding
The disadvantage to the W3C event-binding method is the following:

• It does not work in Internet Explorer; you must use IE’s attachEvent function instead.

If Internet Explorer utilized the W3C’s method of attaching event handlers, this chapter
would be much shorter than it is now, as there would be virtually no need to discuss alterna-
tive methods of binding events. Until that day, however, the W3C’s event-binding methods
are still the most comprehensive and easy to use.

CHAPTER 6 ■ EVENTS124

DOM Binding: IE
In a lot of ways, the Internet Explorer way of binding events appears to be very similar to the
W3C’s. However, when you get down to the details, it begins to differ in some very signifi-
cant ways. Some examples of attaching event handlers in Internet Explorer can be found in
Listing 6-13.

Listing 6-13. Samples of Attaching Event Handlers to Elements Using the Internet Explorer Way
of Binding Events

// Find the first <form> element and attach a 'submit' event handler to it
document.getElementsByTagName("form")[0].attachEvent('onsubmit',function(){

// Stop all form submission attempts
return stopDefault();

},);

// Attach a keypress event handler to the <body> element of the document
document.body.attachEvent('onkeypress', myKeyPressHandler);

// Attach an load event hanlder to the page
window.attachEvent('onload', function(){ … });

Advantage of IE Binding
The advantage to Internet Explorer’s event-binding method is the following:

• You can bind as many events to an element as you desire, with none overwriting previ-
ously bound handlers.

Disadvantages of IE Binding
The disadvantages to Internet Explorer’s event-binding method are the following:

• Internet Explorer only supports the bubbling phase of event capturing.

• The this keyword inside of event listener functions points to the window object, not the
current element (a huge drawback of IE).

• The event object is only available in the window.event parameter.

• The name of the event must be named as ontype—for example, onclick instead of just
requiring click.

• It only works in Internet Explorer. You must use the W3C’s addEventListener for
non-IE browsers.

As far as semistandard event features go, Internet Explorer’s event-binding implemen-
tation is sorely lacking. Due to its many shortcomings, workarounds will continue to have to
exist to force it to behave reasonably. However, all is not lost: A standard function for adding
events to the DOM does exist and it will greatly ease our pain.

CHAPTER 6 ■ EVENTS 125

addEvent and removeEvent
In a contest run by Peter-Paul Koch (of http://quirksmode.org) in late 2005, he asked
the general JavaScript-coding public to develop a new pair of functions, addEvent and
removeEvent, which would provide a reliable way for users to add and remove events onto
a DOM element. I ended up winning that contest with a very concise piece of code that
worked well enough. However, afterward, one of the judges (Dean Edwards) then came out
with another version of the functions that far surpassed what I wrote. His implementation
uses the traditional means of attaching event handlers, completely ignoring the modern
methods. Due to this fact, his implementation is able to work in a large number of brow-
sers, while still providing all the necessary event niceties (such as the this keyword and
standard event object). Listing 6-14 shows a sample piece of code, using all of the different
aspects of event handling, which makes great use of the new addEvent function, including
the prevention of the default browser event, the inclusion of the correct event object, and
the inclusion of the correct this keyword.

Listing 6-14. A Sample Piece of Code Using the addEvent Function

// Wait for the page to finish loading
addEvent(window, "load", function(){

// Watch for any keypresses done by the user
addEvent(document.body, "keypress", function(e){

// If the user hits the Spacebar + Ctrl key
if (e.keyCode == 32 && e.ctrlKey) {

// Display our special form
this.getElementsByTagName("form")[0].style.display = 'block';

// Make sure that nothing strange happens
e.preventDefault();

}
});

});

The addEvent function provides an incredibly simple but powerful way of working
with DOM events. Just looking at the advantages and disadvantages, it becomes quite clear
that this function can serve as a consistent and reliable way to deal with events. The full
source code to it can be found in Listing 6-15, which works in all browsers, doesn’t leak any
memory, handles the this keyword and the event object, and normalizes common event
object functions.

CHAPTER 6 ■ EVENTS126

Listing 6-15. The addEvent/removeEvent Library Written by Dean Edwards

// addEvent/removeEvent written by Dean Edwards, 2005
// with input from Tino Zijdel
// http://dean.edwards.name/weblog/2005/10/add-event/

function addEvent(element, type, handler) {
// assign each event handler a unique ID
if (!handler.$$guid) handler.$$guid = addEvent.guid++;

// create a hash table of event types for the element
if (!element.events) element.events = {};

// create a hash table of event handlers for each element/event pair
var handlers = element.events[type];
if (!handlers) {

handlers = element.events[type] = {};

// store the existing event handler (if there is one)
if (element["on" + type]) {

handlers[0] = element["on" + type];
}

}

// store the event handler in the hash table
handlers[handler.$$guid] = handler;

// assign a global event handler to do all the work
element["on" + type] = handleEvent;

};

// a counter used to create unique IDs
addEvent.guid = 1;

function removeEvent(element, type, handler) {
// delete the event handler from the hash table
if (element.events && element.events[type]) {

delete element.events[type][handler.$$guid];
}

};

function handleEvent(event) {
var returnValue = true;

// grab the event object (IE uses a global event object)
event = event || fixEvent(window.event);

CHAPTER 6 ■ EVENTS 127

// get a reference to the hash table of event handlers
var handlers = this.events[event.type];

// execute each event handler
for (var i in handlers) {

this.$$handleEvent = handlers[i];
if (this.$$handleEvent(event) === false) {

returnValue = false;
}

}

return returnValue;
};

// Add some "missing" methods to IE's event object
function fixEvent(event) {

// add W3C standard event methods
event.preventDefault = fixEvent.preventDefault;
event.stopPropagation = fixEvent.stopPropagation;
return event;

};

fixEvent.preventDefault = function() {
this.returnValue = false;

};

fixEvent.stopPropagation = function() {
this.cancelBubble = true;

};

Advantages of addEvent
The advantages of Dean Edwards’s addEvent event-binding method are the following:

• It works in all browsers, even older unsupported browsers.

• The this keyword is available in all bound functions, pointing to the current element.

• All browser-specific functions for preventing the default browser action and for stop-
ping event bubbling are neutralized.

• The event object is always passed in as the first argument, regardless of the browser
type.

Disadvantage of addEvent
The disadvantage of Dean Edwards’s addEvent event-binding method is the following:

• It only works during the bubbling phase (since it uses the traditional method of event
binding under the hood).

CHAPTER 6 ■ EVENTS128

Considering just how powerful the addEvent/removeEvent functions are, there is
absolutely no reason not to use them in your code. On top of what’s shown in Dean’s default
code, it’s really trivial to add things such as better event object normalization, event triggering,
and bulk event removal, all things that are very difficult to do with the normal event structure.

Types of Events
Common JavaScript events can be classified into a couple different categories. Probably the
most commonly used category is that of mouse interaction, followed closely by keyboard and
form events. The following list provides a broad overview of the different classes of events that
exist and can be handled in a web application. For a lot of examples of the events in action,
please refer to Appendix B.

Mouse events: These fall into two categories: events that track where the mouse is cur-
rently located (mouseover, mouseout), and events that track where the mouse is clicking
(mouseup, mousedown, click).

Keyboard events: These are responsible for tracking when keyboard keys are pressed and
within what context—for example, tracking keyboard presses inside of form elements as
opposed to key presses that occur within the entire page. As with the mouse, three event
types are used to track the keyboard: keyup, keydown, and keypress.

UI events: These are used to track when users are utilizing one aspect of the page over
another. With this you can reliably know when a user has begun input into a form ele-
ment, for example. The two events used to track this are focus and blur (for when an
object losses focus).

Form events: These relate directly to interactions that only occur with forms and form
input elements. The submit event is used to track when a form is submitted; the change
event watches for user input into an element; and the select event fires when a <select>
element has been updated.

Loading and error events: The final class of events are those that relate to the page itself,
observing its load state. They are tied to when the user first loads the page (the load event)
and when the user finally leaves the page (the unload and beforeunload events). Addi-
tionally, JavaScript errors are tracked using the error event, giving you the ability to
handle errors individually.

With these general classes of events in mind, I recommend that you actively look over the
material in Appendix B where I dissect all the popular events, how they work, and how they
behave in different browsers, and describe all the intricacies needed to make them do what
you want.

Unobtrusive DOM Scripting
Everything that you’ve learned up to this point comes to one incredibly important goal: writ-
ing your JavaScript so that it interacts with your users unobtrusively and naturally. The driving
force behind this style of scripting is that you can now focus your energy on writing good code
that will work in modern browsers while failing gracefully for older (unsupported) browsers.

CHAPTER 6 ■ EVENTS 129

To achieve this, you could combine three techniques that you’ve learned to make an applica-
tion unobtrusively scripted:

1. All functionality in your application should be verified. For example, if you wish to
access the HTML DOM you need to verify that it exists and has all the functions that
you need to use it (e.g., if (document && document.getElementById)). This tech-
nique is discussed in Chapter 2.

2. Use the DOM to quickly and uniformly access elements in your document. Since you
already know that the browser supports DOM functions, you can feel free to write your
code simply and without hacks or kludges.

3. Finally, you dynamically bind all events to the document using the DOM and your
addEvent function. Nowhere must you have something such as this: <a href="#"
onclick="doStuff();">…. This is very bad in the eyes of coding unobtrusively, as
that code will effectively do nothing if JavaScript is turned off or if the user has an old
version of a browser that you don’t support. Since you’re just pointing the user to a
nonsensical URL, it will give no interaction to users who are unable to support your
scripting functionality.

If it isn’t apparent already, you need to pretend that the user does not have JavaScript
installed at all, or that his browser may be inferior in some way. Go ahead, open your browser,
visit your favorite web page, and turn off JavaScript; does it still work? How about all CSS; can
you still navigate to where you need to go? Finally, is it possible to use your site without a mouse?
All of these should be part of the ultimate goal for your web site. Thankfully, since you’ve built up
an excellent understanding of how to code really efficient JavaScript code, the cost of this transi-
tion is negligible and can be done with minimal effort.

Anticipating JavaScript Being Disabled
The first goal that you should achieve is the complete removal of all inline event binding
inside your HTML documents. There are a couple problem areas that you can look for in your
document that frequently arise:

• If you disable JavaScript on your page and click any/all links, do they take you to a web
page? Frequently developers will have URLs such as href="" or href="#", meaning that
they’re working some additional JavaScript voodoo to get the users their results.

• If you disable JavaScript, do all of your forms work and submit properly? A common
problem occurs when using <select>s as dynamic menus (that only work with
JavaScript enabled).

Using these important lessons, you now have a web page that is completely usable for
people who have JavaScript disabled and who continue to use unsupported browsers.

Making Sure Links Don’t Rely on JavaScript
Now that the user can perform all the actions on the page, you need to make sure that the user
is provided with adequate notice before any action is performed. When Google released
Google Accelerator, which goes through all the links of a page and caches them for you, users

CHAPTER 6 ■ EVENTS130

found that their e-mail, posts, and messages were magically being deleted for no apparent
reason. This was due to the fact that developers were putting links in their pages to delete a
message (for example), and then popping up a confirmation box (using JavaScript) to confirm
the deletion. But Google Accelerator completely ignored that pop-up, as it should, and tra-
versed the link anyway.

This scenario is an elaborate way of pointing you toward the HTTP specification, which
is used to transport all documents and files over the Web. Most simply, a GET request occurs
when you click a link; a POST occurs when you submit a form. In the specification it is stated
that no GET request should have damaging side effects (such as deleting a message), which
is why the Google Accelerator did what it did. It wasn’t due to bad programming on Google’s
part, but on the part of the web application developers who created the links in the first
place.

In a nutshell, all links on your site must be nondestructive. If by clicking a link you are
able to delete, edit, or modify any user-owned data, you should probably be using a form
to achieve that goal instead.

Watching for When CSS Is Disabled
One particularly sticky situation is the intersection between old and new browsers: browsers
that are too old to support modern JavaScript techniques but are new enough to support CSS
styling. A popular DHTML technique is to have an element start off as hidden (either with dis-
play set to none, or visibility set to hidden) and then have it fade in (using JavaScript) when
the user first visits the page. However, if the user does not have JavaScript enabled, he will
never see that element. A solution to this problem is shown in Listing 6-16.

Listing 6-16. Providing a Fade-in-on-Load Technique Without Failing if JavaScript Is Disabled

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

<!--The instant the script is run, a new class is attached to the <html> element
giving us the ability to know if JavaScript is enabled, or not.-->

<script>document.documentElement.className = "js";</script>

<!--If JavaScript is enabled, hide the block of text,
which we will fade in later.-->

<style>.js #fadein { display: none }</style>
</head>
<body>

<div id="fadein">Block of stuff to fade in…</div>
</body>
</html>

CHAPTER 6 ■ EVENTS 131

This technique goes way beyond simple fade-in DHTML, however. The ability to know
whether JavaScript is disabled/enabled and to apply styles is a huge win for careful web
developers.

Event Accessibility
The final piece to take into consideration when developing a purely unobtrusive web applica-
tion is to make sure that your events will work even without the use of a mouse. By doing this,
you help two groups of people: those in need of accessibility assistance (vision-impaired users),
and people who don’t like to use a mouse. (Sit down one day, disconnect your mouse from
your computer, and learn how to navigate the Web using only a mouse. It’s a real eye-opening
experience.)

To make your JavaScript events more accessible, anytime you use the click, mouseover,
and mouseout events, you need to strongly consider providing alternative nonmouse bind-
ings. Thankfully there are easy ways to quickly remedy this situation:

Click event: One smart move on the part of browser developers was to make the click
event work whenever the Enter key is pressed. This completely removes the need to pro-
vide an alternative to this event. One point to note, however, is that some developers like
to bind click handlers to submit buttons in forms to watch for when a user submits a web
page. Instead of using that event, the developer should bind to the submit event on the
form object, a smart alternative that works reliably.

Mouseover event: When navigating a web page using a keyboard, you’re actually changing
the focus to different elements. By attaching event handlers to both the mouseover and
focus events you can make sure that you’ll have a comparable solution for both keyboard
and mouse users.

Mouseout event: Like the focus event for the mouseover event, the blur event occurs
whenever the user’s focus moves away from an element. You can then use the blur event
as a way to simulate the mouseout event with the keyboard.

Now that you know which event pairs behave the way you want them to, you can
revisit Listing 6-3 to build a hoverlike effect that works, even without a mouse, as shown
in Listing 6-17.

Listing 6-17. Attaching Pairs of Events to Elements to Allow for Accessible Web Page Use

// Find all the <a> elements, to attach the event handlers to them
var li = document.getElementsByTagName("a");
for (var i = 0; i < a.length; i++) {

// Attach a mouseover and focus event handler to the <a> element,
// which changes the <a>s background to blue when the user either
// mouses over the link, or focuses on it (using the keyboard)
a[i].onmouseover = a[i].onfocus = function() {

this.style.backgroundColor = 'blue';
};

CHAPTER 6 ■ EVENTS132

// Attach a mouseout and blur event handler to the <a> element
// which changes the s background back to its default white
// when the user moves away from the link
a[i].onmouseout = a[i].onblur = function() {

this.style.backgroundColor = 'white';
};

}

In reality, adding the ability to handle keyboard events, in addition to typical mouse
events, is completely trivial. If nothing else, this can help to serve as a way to help keyboard-
dependant users better use your site, which is a huge win for everyone.

Summary
Now that you know how to traverse the DOM, and bind event handlers to DOM elements, and
you know about the benefits of writing your JavaScript code unobtrusively, you can begin to
tackle some larger applications and cooler effects.

In this chapter I started with an introduction to how events work in JavaScript and
compared them to event models in other languages. Then you saw what information the
event model provides and how you can best control it. We then explored binding events to
DOM elements, and the different types of events that are available. I concluded by showing
how to integrate some effective unobtrusive scripting techniques into any web page.

Next you’re going to look at how to perform a number of dynamic effects and inter-
actions, which make great use of the techniques that you just learned.

CHAPTER 6 ■ EVENTS 133

