

IERG4210 Web Programming and Security

THE CHINESE UNIVERSITY OF HONG KONG

Dr. Adonis Fung

phfung@ie.cuhk.edu.hk

Information Engineering, CUHK

Product Security Engineering, Yahoo!

Vulnerability Scanning of WebApps
 & Course Reviews
Lecture 12

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 1

 Course Website: https://course.ie.cuhk.edu.hk/~ierg4210/
 Live FB Feedback Group: https://fb.com/groups/ierg4210.2015spring/

https://course.ie.cuhk.edu.hk/~ierg4210/
https://fb.com/groups/ierg4210.2014spring/

Agenda

• Automated WebApp Vulnerability Scanning

– On the high-level architecture/concept
• Blackbox: Crawling, Fuzzing, Output Evaluating

• Whitebox: Source Code available for test/analysis

• Blackbox v.s. Whitebox + Greybox

– On actual usage
• How to operate an automated scanner

• How to combine it with a human knowledge

• To be covered by our invited speaker, Scottie

– a practitioner in penetration testing from NTT

CUHK - IERG4210 Web Programming and Security (2015 Spring) Adonis P.H. FUNG 2

Blackbox Vulnerability Scanning

• Blackbox Scanning
– NIST Definition: Explores a web application by crawling through its

web pages and examines it for security vulnerabilities, which involves
generation of malicious inputs and evaluation of application's
responses.

– Assumption: No knowledge on internal (i.e., server-side) logics

• Core Components
– Crawling: Discover, record, and follow new links/requests

– Fuzzing: Repeat recorded requests with mutated request parameters

– Evaluating: Mostly pattern matching, vulnerability dependent

• Web Vulnerabilities covered
– Reflected XSS, stored XSS, DOM XSS, SQL injection, Path disclosure,

Server Profiling, SSL/TLS settings, LFI/RFI, etc…

– Others: Missing Authentication Check, CSRF, Parameter Tampering

CUHK - IERG4210 Web Programming and Security (2015 Spring) Adonis P.H. FUNG 3

Architecture of Blackbox Scanner

• Crawler
– Make request to http://example.com

– Extract Link/Form/XHR/Redirections

– Store the captured requests to queue

• Fuzzer
– Malicious input generator replacing request

parameters (e.g., query, body, headers)

– Reproduce the request

• Output Evaluating
– Mostly pattern matching to check if

malicious inputs being reflected or caused
an error

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 4

Fuzzer

Crawler

Evaluating

Seed Request

Vulnerabilities

http://example.com/

Crawling

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 5

A.k.a. spider. Works exactly like a search engine,
but no need to do rankings

A.k.a. spider. Works exactly like a search engine,
but no need to do rankings

Request Extractor - Crawling

• Hyperlinks by document.getElementsByTagName()
– , <area href="url">

• Forms by enumerating all key/value possibilities
– <form method="post" action="url”>

 <input name=“” value=“”>
 <select name=“” multiple></select>
 <textarea name=“”></textarea>

• Redirections by detecting page navigations
– HTTP 3xx Location Header

– JavaScript location object

– HTML meta header

• XHRs by wrapping XmlHTTPRequest objects
– XMLHttpRequest.prototype.open(method, url, async)

– XMLHttpRequest.prototype.send(reqBody)

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 6

Request/Response Deduplication

• Request Deduplication
– Observation: Multiple pages might have hyperlinks to the same page

– Purpose: avoid making duplicated requests

• At most one req. per signature := (method, URL, sorted req. parameters)

– Pros: save resources, bandwidth. faster

– Cons: if state changed at server, might miss newly introduced links

• Response Deduplication
– Observation: Multiple pages are derived from the same template

– Purpose: avoid fuzzing similar pages

• Response features: hyperlinks, tags hierarchy, similarity indexes…

• Historic Response Deduplication
– Purpose: fuzz only if a page changed (no longer similar)

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 7

Downloader/Renderer & Event Enumerations

• Downloader/Renderer
– Using a Headless Browser (i.e., full-featured, no screen)

– To save bandwidth, no need to download images and CSS

• Event Enumerations
– Event capturing and synthesizing amid catching newly generated links

– Example Events: onload, onclick, onkey, onmouse, setTimeout, etc…

– Advanced: Workflow event explorations

• Say, a page is found to have 5 buttons

• Click button 1, a dialog is shown with more buttons

• What to click next? Depth-first (New buttons first) v.s. Breath-first

• Still an open and good research topic!

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 8

WIVET Crawling Coverage

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 9

R
ef: h

ttp
://secto

o
lm

ark
et.co

m
/w

ivet-sco
re-u

n
ified

-list.h
tm

l

http://sectoolmarket.com/wivet-score-unified-list.html
http://sectoolmarket.com/wivet-score-unified-list.html
http://sectoolmarket.com/wivet-score-unified-list.html
http://sectoolmarket.com/wivet-score-unified-list.html
http://sectoolmarket.com/wivet-score-unified-list.html
http://sectoolmarket.com/wivet-score-unified-list.html
http://sectoolmarket.com/wivet-score-unified-list.html
http://sectoolmarket.com/wivet-score-unified-list.html

Fuzzing

• General Approach
– Reproduce a request/event from crawler

– With some request parameters mutated

• Replaced with some (hardcoded) attack vectors for XSS, SQL, etc…

• a.k.a. malicious input generation

• Adaptive Approach
– Attack vector list is long, and thus time/bandwidth consuming

– First round: try if some sensitive chars are reflected or result in error

• E.g., for XSS, using ><' " to test if any of those sensitive chars are escaped

– Second round: only if yes, fuzz it with further attack vectors

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 10

Evaluating

• General Approach (mostly pattern matching)
– For every fuzzing attempt, examine the HTTP response

– Reflected XSS: if the attack vector is reflected (not escaped/altered)

– Stored XSS: if the attack vector is found in any previous HTTP response

– SQLi: if the attack vector results in any error message or more/less data

– etc…

• Other Approach
– DOM XSS: untrusted inputs rendered on client-side (not from HTML)

– Tainting: track if a variable propagate from source to critical sinks

• Instrument a headless browser

• Special marker on all variables from request parameters

• Inherit special marker for all string operations (like copy)

• Marked vars reaching critical sinks (e.g., innerHTML, eval(), etc)

• Coverage: Yahoo’s Webseclab, Google’s FiringRange, SecToolMarket, etc

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 11

https://github.com/yahoo/webseclab
https://github.com/google/firing-range
http://sectoolmarket.com/

Whitebox Vulnerability Scanning

• Testing with knowledge to server-side source code/settings
– Pattern Matching

• Check if there’re any safe calls (e.g., sanitizer functions)

• Check if there’re any dangerous calls (e.g., dynamic execution like eval())

– Tainting

• Given an attack vector coming through req.query / req.body

• Check if it reaches non-sanitized html contexts (XSS) or SQL calls (SQLi)

– Control Flow Test

• Explore all branches that might be traversed

• Each branch instrumented to check test coverage

– Symbolic Execution (most computationally expensive)

• Again, explore all branches that might be traversed

• Execute a program without a concrete value like tainting

• Determine what constraints can reach a particular branch (if (s==1) fail())

• Use a constraint solver to determine the actual value

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 12

Whitebox v.s. Blackbox

• Advantages over blackbox approach
– Enhance/ensure exhaustiveness

• Statements instrumented to check percentage covered by tests

• Can literally go through every branch/possibility (e.g., if-then-else)

• Can help with getting a precise input for exploit generation

• Disadvantages over blackbox approach
– Approach is language and framework specific

– May require domain knowledge on the application logic/functionality

– Does not scale well with complex and large apps

• Greybox: whitebox + blackbox
– For instance, it’s much easier to get an exhaustive sitemap by

traversing routes in express/node.js

– With blackbox alone, it depends on providing all entry points as
seeding requests for subsequent crawling

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 13

The Invited talk

• Mr. Scottie Tse
– IE Alumnus

– Penetration Tester, now with NTT

• Topics
– Security tools

– Penetration Testing

– Certifications

– Career Information

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 14

Topics to be Covered (1/2)

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 15

• Web Architecture
– HTTP, URL, etc

• Web Dev. Languages
– HTML, CSS, PHP, (No)SQL

– JavaScript heavy

• Web Dev. Components
– User Interface Design

– Forms Handling

– Database Management

– Session Management & Auth

• Web App. Security:
– 8 Security Principles

– Security Goals: Confidentiality,
Integrity, Availability, Auth,
Non-repudiation

– Browser Security Model: SOPs

– Mashup Devel and Security /
Cross-origin Communications

– Top Application Security Risks

How a webapp is loaded

How a webapp can be developed

How a webapp can be secured

Topics to be Covered (2/2)

CUHK - IERG4210 Web Programming and Security (2015 Spring) Copyright. All Rights Reserved. 16

• Transport Layer
and Browser Security
– TLS/SSL, PKI, Certificates,

Digital Signatures, SSH

– Cert Pinning, 2FA, XSS Audits,
Content Security Policy,
Extensions, etc

• Security Testing
– Penetration Testing

– Web App Crawling and
Scanning

• Building Fast and Scalable
WebApp, plus Optimizations
– Scalability Concerns/Solutions

– Using Cloud Resources

– Settings and Code Tweaks

– Search Engine Optimizations

Extending a basic Web App.!

Going beyond Web App. Security!

Covered over 95% of what was promised in lecture 1

What promised on Day 1 and finally achieved

• This course studies the programming and security of web
applications.
– The programming languages for both client- and server-side will be

introduced, with security design principles and common
vulnerabilities highlighted early on.

– Open protocols, standards and real-world case studies regarding
banking and e-commerce security will be used for illustrations.

– Optimization and performance issues will also be covered.

• This course also extends to the security threats confronting
web browsers, transport protocols and web servers, as well as
optionally the mobile and cloud computing.

• Being security-conscious throughout the development cycle,
students will have the opportunity to practice with web and
mobile programming projects.

17 CUHK - IERG4210 Web Programming and Security (2012 Fall) Adonis P.H. FUNG

Appreciations and Reflections

• Your Effort is Greatly Appreciated!
– Could be a course more demanding than your FYP (as promised, sorry :)

– You have learned some hottest skills and security thinking

• Painful Yet Rewarding Experience!
– Every one has a different learning curve, some faster, some a bit slower

– Majority build a secure e-commerce site in such a short period of time

• Reflections and Wishes
– Build and Maintain secure web applications

– Pioneers in the field of security

– Open start-ups?

– Stay humble

• Thanks for tolerating my glitches and limitations
– Your time to do final course evaluations

CUHK - IERG4210 Web Programming and Security (2012 Fall) Adonis P.H. FUNG 18

Final Examination

• Date: Monday 4 May, 2015

• Time: 9:30am-11:30an

• Venue: Sir Run Run Shaw Hall, Central Campus

• Syllabus: Everything excluding this week of lecture

• Open-XXX: Infinite number of non-digital notes and books

• Format: Section I – 24 MCs (38marks)
 Section II – 8 Short Questions (45marks)
 total: 83marks
 (format similar to Final Exam of previous offering,
 download 2012s papers in https://library.cuhk.edu.hk/)

CUHK - IERG4210 Web Programming and Security (2012 Fall) Adonis P.H. FUNG 19

https://library.cuhk.edu.hk/
https://library.cuhk.edu.hk/

Question Types of Section II (45marks)

1. Compare and Contrast: sth you know  (6)

2. Same-origin policy: legal and illegal cross-origin (6)

3. SOP, XSS and Security Principles (6)

4. Compare and Contrast: again, sth you know  (8)

5. Coding: JavaScript language (3)

6. Coding + Case Study: Clickjacking (4)

7. Case Study: CSRF (7)

8. Coding: Find vulnerability in non-secure code (5)

CUHK - IERG4210 Web Programming and Security (2012 Fall) Adonis P.H. FUNG 20

Some are straightforward, while more requires an analytical mind Some are straightforward, while more requires an analytical mind

